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Design parameters and resulting performance are presented for the sampled data
analogies of continuous-time phase-locked loops of second and third order containing
perfect integrators. Expressions for noise-equivalent bandwidth and steady-state errors
are given, Then, stability and gain margin are investigated using z-plane root loci. Finally,
an application is presented for Voyager subcarrier and carrier tracking underthe dynamics
of the encounters with Uranus and Neptune. For carrier tracking, loop bandwidths nar-
row enough for satisfactory loop SNR, can be achieved using third-order loops without
rate aiding, whereas second-order loops would require aiding. For subcarrier tracking,
third-order loops can be used when the sampling rate is limited to approximately once
per second, as in the Baseband Assembly, whereas second-order loops sufficiently wide
to track the dynamics have stability problems at that sampling rate.

l. Introduction

Phase-locked loops for communications systems synchroni-
zation must satisfy requirements for noise performance,
dynamic tracking, process.or oscillator noise tracking, stability
and gain margin, acquisition, and signal-to-noise ratio thresh-
old. Digital technology enables the use of sampled data loops
with programmable or even adaptively controlled parameters.
These loops have significant advantages over continuous-time
analog loops, but also have some characteristics requiring
different design considerations.

Two major advantages of sampled data loops that enhance
the dynamic tracking ability for a fixed-loop bandwidth are
that. perfect integrators can be realized, resulting in type-two
second-order loops and type-three third-order loops when
desired, and that third-order loops become more feasible

because the parameters can be accurately controlled and
varied with time. A major potential disadvantage of sampled
data loops is that they are never unconditionally stable: high
loop gains always result in instability due to the inherent
transport lag. This is as opposed to first- and second-order
continuous-time loops, which are normally unconditionally
stable.

Stability problems with sampled data loops occur when the
loop bandwidth is not sufficiently small compared to the
sampling rate, i.e., the loop filter update rate. This case is of
significant interest because the sampling rates for typical
implementations are limited by mechanization considerations.
This article investigates the stability and gain margin of second-
and third-order loops when the loop bandwidth compared
with sampling rate is wide enough that continuous loop
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analysis is inadequate. Achievable loop bandwidths and
steady-state phase-lag errors due to dynamics are discussed.

The Voyager II encounters with Uranus in January, 1986,
and with Neptune in August, 1989, are of particular interest.
The performance is presented for various loops for both sub-
carrier and carrier tracking under the dynamics at the en-
counters. It is shown that third-order loops result in excellent
performance at both encounters, whereas second-order loops
are marginal at Uranus and unsatisfactory at Neptune, for
both carrier and subcarrier tracking.

ll. Approach

The design of sampled data loops is more complex than
that of continuous loops because the physical parameters of
the loops cannot be calculated directly, as in the case of
continuous loops, from the desired loop bandwidth, damping
ratio, and, for third-order loops, the third-order gain param-
eter, Furthermore, stability must be investigated, because
sampled data loops can be only conditionally stable. On the
other hand, there is some simplification because perfect inte-
grators can be used. This also enhances dynamic performance.

There is a folklore rule of thumb (Ref. 1) that sampled
data loops perform much like the continuous-time equival-
ents whenever the loop bandwidth is less than one-tenth of
the sampling rate. It is shown here that this is a good folklore
regarding loop bandwidth, but not loop stability. For a nomi-
nal bandwidth of one-tenth of the sampling rate and for
typical damping and transport lag, samipled data loops become
unstable when the loop gain increases by only approximately
7 dB. This is true for both second- and third-order loops.
The third-order loops also are unstable at low gain. Thus,
stability should always be investigated for sampled data loops.

The approach taken here is to choose a nominal loop band-
width as a fraction of sampling rate, and to pick other param-
eters based upon continuous time theory. Stability and gain
margin are then investigated using z-plane root loci. Actual
loop bandwidth and steady-state phase error due to dynamics
can then be calculated as a function of loop gain for gains
resulting in stability.

lll. Review of Continuous Time Phase-
Locked Loops

In this section we present a review of results widely used by
designers of continuous-time phase-locked loops. Specifically,
. we review the expressions obtained from linear analysis of
noise equivalent bandwidth and steady-state phase errors for
perfect integrator second- and third-order loops.
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Then, in Section IV, we discuss how to obtain a sampled
data loop that contains perfect integrators, and whose gain
parameters can be conveniently expressed in terms of the
continuous-loop parameters r, B; T, and k. We then calculate
the noise equivalent bandwidth for the digital loops and the
steady-state phase errors for specified input phase dynamics.

A. Second-Order Continuous Loop

The open-loop transfer function of the loop is written as
AKF(s), where AK is the loop gain and F(s) is the loop
filter transfer function. The parameter 4 is due to the phase
detector and the signal amplitude, and K is selected by the
designer and includes the VCO gain.

The perfect integrator (type 2) second-order continuous
loop has a loop filter transfer function of the form (Refs. 2
and 3)

. 1+72s
F(s) =

7,5 1
and typically 7, << 7,. For a given loop gain 4K, the loop

damping parameter r is defined as

AK 73
r= ()
T3
The closed-loop transfer function H(s) is given by
_  AKF(s)
HE) = 52RFG) ®)

and its associated one-sided loop noise bandwidth B, (in Hz)
is

r+1
41'2 )

S T
BL_271 .[m |[H{fw)|* dw =

Often in practice, the values » = 2 or 4 are selected since
they correspond to damping ratios (from standard control
theory notation) of { = 0.707 or 1 respectively (note that
r=4%2),

Now consider tracking the carrier or subcarrier signal from -
a spacecraft with dynamics. The steady-state phase error for
this loop due to an assumed instantaneous doppler of the
form

wi .
d@ = e (Q, + A1) S




where
w, = subcarrier (carrier) frequency (rad/s)
¢ = speed of light (m/s)
Q, = spacecraft speed {m/s) at ¢ = 0 (m/s)
Ay = spacecraft acceleration (m/s?)

can be calculated via the final-value theorem, and is

s wi QO AO
¢ss = lim e + 8 [1~H(s)] Y + Y
s+0 s s
28, ﬁ (rt1)? 6)
c 4 4B,

B. Third-Order Continuous Loops

The loop filter and the corresponding closed-loop transfer
function of a perfect third-order loop can be represented
respectively as (Refs. 2 and 4)

1+ 7'28 1
Fl = —— ¢ 3 @)
1 T, Ty 8
rk + 17,8 +r(1,5)* :
H(s) = ®

rk +rTys t r('rzs)2 + (7-2s)3

where, as before, r = AK73/r, and with k = 7, /5. The cor-
responding one-sided loop bandwidth B, (in Hz) is

_r [(r-k+1
B, = 472( r-k ) ®)

notice that if & = 0, then our loop reduces to a perfect inte-
grator second-order loop.

When the spacecraft experiences jerk, the Laplace trans-
form of the phase error is

w, QO A0 J0
@) = [1-H(s)] [s—2 + S—3 +—S;]

and the resulting steady-state phase error is

W Jol r fr-kt1) |3
%"7715[5( -k )] (10

IV. Sampled Data Loop Noise and Dynamic
Responses

A general block diagram for a sampled data loop is shown
in Fig. 1. We resort to the z-transform technique because of
the discrete nature of the system. In this linear model, 8, sym--
bolizes the value of the mput phase at sampling 1nstant L,
and 0 its corresponding estiinate. AK represents the 1oop
gain, mcludmg the numerically controlled oscillator (NCO)
gain, F' (2) is an arbitrary loop filter, and N(z) is characteristic
of the particular implementation, which includes the modeling
of the NCO, phase detector, and computational delays. The
open-loop transfer function is G(z) = AKF(z)N(z). A factor
D(z) may be added as a cascaded compensator to enhance
stability.

In this article we concentrate exclusively on the N(2) that
arises in the proposed implementation for the DSN Advanced
Receiver (Ref. 5). In this case, the sampling interval (filter
update interval) is:of length T. Phase estimates are averages of
6 - 8 over one interval, and there is a transport lag of T sec-
onds from the end of the measurement time until the NCO is
updated, For this important case, N(z) is given by

- T(z+1)

N(z) = 2
2z%(z- 1)

an

The derivation of this transfer function and extension to
other transport lags is found in Appendix A.

Regarding the loop filter F(z), we deal with the sampled
data versions of filters comprising single and double integra-
tors as defined by Eqs. (1) and (7).

A. Second-Order DPLL

The digital equivalent of the loop filter in the perfect
second-order analog PLL has a transfer function of the form
F(z) = G + G,Tz/(z - 1). To establish a correspondence
between the digital PLL (DPLL) and the analog PLL, let
G, = 7,/7, and G, = 1/r; where 7, and 7, are the time con-
stants of the filter defined by Eq. (1). Then using Egs. (2)
and (4) we can express the open-loop transfer function as

e [43 T( b (4BLT)2:|
- (z + Z -
G(z) =2 *1 1) 1 gy

(z-1)7? 22

Note that B, is the noise bandwidth of the analog loop, not
the bandwidth of the digital loop. The closed-loop transfer
function H(z) = G(2)/(1 + G(2)) can be represented as
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) .
bzz + baz + b4 where

Hi) =——— (13)
82" ez a2t tazta, B, = b2+b2+b2+b2+b?
where By = 2(bgby +byb, +byby +hyb,)
B, = 2(b.b,+bb, +b b))
= r 32 r r 2 2 072 173 " 274
b, =7 (@ +d) @, = 1+5d+5d )
B, = 2(byb, +bb,)
=X ;2 =L 42 _
by =5 d a, == d B, = 2bp,
b = Ly e = -Lg Qo = 48, -29e, *a, (a,¢, - e5e,)
4 2 4 2
Q = a0€ -ama, ta, (a4, -ae)
4BLT
g =1 d=—5 0, = aue, -aae ta,(a,e -ae)
2, = -2 Q& = 4 (e, - ee) -a, (¢ - a5e,)
Notice that this is actually a fourth-order loop in z, but we +a, (e1 € - aaez)
discuss it as a second-order loop because it is analogous to a
type-2 second-order continuous loop. o, = -0, %40 -40, ta 0,
. . . e, = a ta
1. Noise Equivalent Bandwidth of the Second-Order 1 o "2
DPLL. For the DPLL, the one-sided noise equivalent band- e = a4 +g
width Bz (Hz) is given by 2 173
e, = 4,tq,
1 1 1 —1y 42
Bl 4 = — HHEZH= (19 e, = a +ta
L . . 4 o “a
2T g2(1) 27 Sy z
& = ayta, ta,
where T is the update time in seconds, and H2(1) = 1, regard-
less of r and B, T The integral I, can also be evaluated using the residue
theorem, i.e.,
Define
I = z [residues of H(z) H(z™ ")z}
LA ¢ HoHCYH Z (15) ins it i
A -
21 ” . at the poles inside the unit circle] (17
For a single pole of H(z)H(z"1)z~! at z = 4, the residue is
then from Table IIl in Ref. 6 we have simply
_ residue = lim (z-a) H(z) H(z™")z™}
[4 = z—raq .
2,B8,0, - 4,80, +a,B,0, -¢,8,0, +B,0, while for a pole at z =g of multiplicity %, the residue is

% [(ag - a:) 0, - (2, -230,) @, + (aoaz' -a,8,) Q, - (a4, - 4,2,) O3]

1 dk—l
residue = lim -
(16) z=a (k-1 ggF-1

- ) HE ) 27
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this procedure requires a numerical solution because of the

order of the polynomials involved.

A comparison of B; with B, is shown in Fig. 2 where the
value of the parameter « is zero for the second-order loop. The
two bandwidths are very close for B, T'<0.1.

2. Dynamic Response of Second-Order DPLL, Under the

assumption of linearity, the phase error (no noise) in the
z-domain is given by the following expression

o) = [1-H()] 8@) (18)
where H(z) is the closed-loop transfer function given by Eq.
(13) and 0(z) is the z-transform of the phase input. If we
assume an instantaneous doppler characterized by Eq. (5),

and apply the final value theorem to our phase-error equa-
tion, we get

w -—
b, = im () -]
L ATz (2 +1)
(z - 1)? 2(z-1)%

(19)

This is exactly the same result obtained for continuous loops,
Eq. (6). Thus, sampling and N(z) do not affect the steady-
state response. Again, note that B, is the bandwidth of the
continuous loop.

B. Third-Order DPLL

We now consider an extension of the loop filter employed
in the second-order DPLL. We add an additional perfect inte-
grator, so that our new filter has a transfer function of the
form F(z) = G, + G,Tz/(z - 1) + G3T?2%(z - 1)2. As before,
we let G, = 1,/7,, G, = 1/7, and set the new constant G5 =
1/7,74. The closed-loop transfer function H(z) in terms of the
analog parameters 7, k, and B, T involves the manipulation of
Eq. (9) along with r = AK7% /7, and k = 1, /75. We obtain

bz +b 22 +b z+b
H(z) = 2 3 4 5 . (20)

5 4 3 2
aoz +alz +a2z +a32 +a4z+as

where

b, =5 (d+d* +kd)
=F 3
by = 5(kd® - )

by = -5@ +d)

=r
b5—2d
a0=1
q, = -3

a, = 3+5(d+d* +kd*)

a, = -1 +—§(kd3—a')

= P 2
04——§(d +d)
a5=—%d

4B. T _
d = L~ r k

r  r-k+1

Notice too, that this is actually a fifth-order loop, but it is
analogous to the third-order, type-3 continuous loop.

1. Noise Equivalent- Bandwidth ef the Third-Order DPLL,
The one-sided noise equivalent bandwidth Bj (Hz) can be
written as

B =1 y D

LooarE(1)

with I defined in Eq. (15). Again, H*(1) = 1 regardless of 7,
B, T, and k. Unfortunately, no closed form solution is readily
available for the evaluation of J. Nevertheless, from Ref. 7,
I can be obtained numerically, by solving the following set of
simultaneous equations:
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(@, ,ta, M. =B

[} ¥

-
OM‘"

F=01,2-5
M, = agl;
22
0 (22)
Zb?, r=20
i i=0
B, =X
’ 5—r ‘
2y bp,,, r=125

K =0

where the coefficients ¢; and b, are as shown in Eq. (20). J;
can also be evaluated using the residue theorem, as outlined at
the end of Section A-1.

In Fig. 2 we summarize the numerical results obtained with
Eq. (22). For convenience, we plot the normalized product
Bj T (digital) versus B, T (analog) for several cases of interest,
inctuding k£ = 0, which corresponds to the second-order DPLL.
Notice that for values of B, T < 0.07, the resulting B;T is
insensitive to either r or k¥ and the digital system resembles the
analog system, with By T = B, T. On the other hand, when
B, T > 0.1, the ratio of B; T to B, T increases rapidly with
B, T, suggesting that the system is approaching the instability
point. This point occurs when B; T = 0.25 for all values of
¥ and k. These results are also confirmed later, using the root
locus technique.

2. Dynamic Response of the Third-Order DPLL. The linear
loop equation for the phase error in the absence of noise is
given by Eq. (18), where H(z) is now given in Eq. (20), and

[+

o w, [ Q,Tz A T2z +1) J T2z +4z +1)
= — + + ,
’ (z-1)? 2z -1)° 6(z - 1*

is the z-transform of w,/c(Qyt + 1/2A4t% + 1/6J13), which
assumes that a jerk is present.

Using the final value theorem, the static phase error (in
‘radians) is

¢ =

$8

w, JT° r-k+1) |2
P [4BLT(r—k)] (rad) (23)

This result is exactly the one obtained for a perfect third-order
continuous loop (see Eq. (10)). Note that B, is the band-
width of the continuous loop.
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V. Stability of Sampled Data Loops

A basic requirement of a control system is that it must be
stable under all operating conditions. It is important for the
loop to be stable not only at the design point, but at a region
of parameter values around the design point as well. This
assures stability for variations in the parameters. We utilize the
concept of gain margin to determine the region of stability.
Gain margin is the ratio of the maximum (or minimum) loop
gain for stability to the design-point loop gain. We use the root
locus plot to determine stability and gain margin,

The root locus is a pictorial representation of the poles of
the closed-loop transfer function as a function of the loop
gain. The plot starts at zero gain on the open-loop poles and
terminates at infinite gain on the open-loop zeros. For a sam-
pled data loop, the plot is drawn in the z-plane, and the stable
region is the interior of the unit circle.

The approach taken here is to choose nominal values for
r, B, T, and k, and then to plot the root locus as a function
of loop gain. We then evaluate the system gain margin. For
second- and third-order loops, note that loop gain is propor-
tional to the parameter r.

A. Stability First-Order DPLL

For a first-sampled data loop with F(z) = 1, and with the
N(z) of Eq. (11), the closed-loop transfer function is

AKT (z+1)

H(z) = 3 5
2z° -2z* + AKTZ + AKT

(24)

The root locus plot is shown in Fig. 3.

In contrast with a first-order analog loop, which is uncondi-
tionally stable, the digital loop becomes unstable for high-loop
gains. By using the Routh-Hurwitz criterion, we can determine
exactly the minimum value of (r, ) that produces instability.
The result is '

osc

8-2 _0.828
UK),, = Y52 =088 (25)

For continuous loops, we know that (Ref. 2)

B, =

=15

(26)

Defining gain margin (gm) as the ratio r . /r, we obtain
after combining Egs. (25) and (26)

gm=~gr 27




B. Stability of Second-Order DPLL

In Fig. 4 we show a typical example of the root locus plot
for the second-order sampled data loop. In this example, the
design point bandwidth is (B, T)o =0.10, and the design point
r, denoted r, is 4. The main point of the plot is that the loop
is stable at low gains and unstable at high gains. This is also
true for other nomimal parameters (B, T), and 74. In this
example, there are two underdamped (complex) roots and two
overdamped (real) roots for both small and large r, but for
2.55 £ r £ 2.75, all thé roots are real. For some values of
(B, T), and 7,, there are two complex roots for all r.

For the first-order loop we found that the gain margin is
inversely proportional to B;T. Finding an exact expression
similar to Eq. (26) using the Routh-Hurwitz criterion or Jury’s
test is difficult because of the order of the polynomials
involved. Nevertheless, by generating a large number of root
loci for different nominal values, we found that

o

25

L

gm = (28)

o
~

which is valid when r = ry (actual design point equal to the
nominal point) and B; T < 0.10. Notice that this gain margin
is slightly larger than that of the first-order loop.

C. Stability of Third-Order DPLL

In Fig. 5 we present three typical examples for the third-
order loop. They show that, in general, the third-order DPLL
is unstable for both low and high gains. At low gains, instabil-
ity occurs if » < k, while for high gains, instability occurs if
r 2k +0.25r /(B T),.

Thus, the “high-gain” margin of the third-order DPLL is
approximately the same for the first- and second-order DPLLs.
For third-order loops, one also needs to consider the “low-
gain” margin, or the amount by which the gain can be reduced
" before instability occurs. This “low-gain” margin is approxi-
mately k/r,. Reduction of k improves “low-gain” margin at
the expense of steady-state phase errors due to jerk (Eq. (23)).
This follows intuition, since £ = O corresponds to a second-
order loop.

~ D. Stability Improvement by Compensation

For critical applications, typically when B T is not suffi-
ciently small to have adequate gain margins, some improve-
ment in stability may be achieved by lead, lag, or tuned com-
pensation networks D(z). Study of loops with compensation is
outside the scope of this article.

VI. Application to Voyager

In this section, we determine the loop-bandwidth require-
ments for second- and third-order PLLs for dynamic tracking
at the Voyager 11 encounters with Uranus and Neptune. Our
criteria for good dynamic tracking is that the steady-state
phase error be 1 degree or less. For DPLLs, the sampling rate
should be greater than 10 B, to have an adequate gain margin
of approximately 7 dB. In this case, Bz = B, , so the band-
widths are approximately the same for continuous and sam-
pled data loops.

A. Bandwidth Requirements for Second-Order PPLs

From Eq. (19), for second-order loops the B; required for
a given steady-state phase error due to acceleration is

_1_A3/2 Y, 1
Jr € By

B 29

_rtl
L 4

For example, for the Voyager subcarrier frequency of 360 kHz
and a steady-state error of 1°, Eq. (29) simplifies to

- rtl a2
By = 016472y

r

In Table 1 we present the required minimum second-order loop
bandwidth for Voyager subcarrier and carrier tracking (at
8.4 GHz) in order to achieve 1° steady-state phase error at the

* encounters. We assume acceleration values of A, = 0.32 m/s?

and 4 m/s? for Uranus and Neptune, respectively.

B. Bandwidth Requirements for Third-Order PLLs

From Eq. (23), for third-order loops the B; required for a
given steady-state phase error due to jerk is

. 1/3
5 o rfr=kr1) (@, %o Y
L 4\ r-k c rk¢ss

For 1° steady-state error when the spacecraft experiences jerk,

@D

-and for the 360-kHz subcarrier frequency,

= r ;\ r-k+1 1/3
BL 0.189('.16)1/3 ( " )JO

In Fig. 6 we plot the normalized ratio B /J,1/3 for different
values of » and &. Notice that for fixed & the required band-
width increases as » increases., Table 2 summarizes the band-
width requirements for third-order loops at encounters, We
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assume jerk values of J, =0.83 X 10™* m/s® and 0.29 X 1072
m/s3 for Uranus and Neptune, respectively.

The reader should not conclude. from Fig. 6 that small
values of r are optimum, considering all effects. Specifically,
the problem of acquisition must be considered. This will be
done in a future report.

C. Conclusions for Subcarrier Tracking

For subcarrier tracking, there appear to be no fundamental
problems with either second- or third-order DPLLs, The widest
bandwidth required to track at Neptune with a second-order
loop is 0.82 Hz, which results in an adequate loop SNR of
39 dB under weak signal conditions of symbol SNR of 0 dB
and symbol rate of 20 ksymbols/s. For the existing Baseband
Assembly (BBA) Demodulator Synchronizer (DSA), the only
potential problem is the sampling rate, The DSA sampling rate
is currently limited to slightly over 1/s. With this sampling
rate, use of third-order loops is indicated for both encounters.

D. Conclusions for Carrier Tracking

For carrier tracking, loop SNR is a serious problem, and it
is important to use the narrowest loop bandwidth that is con-
sistent with both dynamic tracking and with tracking of the
oscillator instabilities.

With the current DSN receivers, the Voyager spacecraft is
tracked in the cruise mode with threshold bandwidths of
B; =6 Hz. The actual B, depends on SNR, but is on the order
of 10 Hz. Thus, it is known that 10-Hz bandwidths are satis-
factory for tracking oscillator instabilities.

Dynamic tracking at the encounters with second-order
loops require bandwidths of 30 to 130 Hz. With third-order
loops, the dynamic tracking limitation is only 1 to 4 Hz.
Thus, use of third-order loops is indicated. Considering both
dynamics and oscillator instabilities, a bandwidth of approxi-
mately B, = 10 Hz may be appropriate. The loop must be
implemented with an adequate sampling rate of at least 100/s.
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Table 1. Second-order PLL bandwidths for 1° steady-state phase

error at encounters

Bandwidth B, , Hz

o Subcarrier Carrier
Uranus Neptune Uranus Neptune
2 0.20 0.70 30 106
4 0.23 ' 0.82 35 126
Table 2. Third-order PLL bandwidths for 1° steady-state phase
error at encounters
Bandwidth B, Hz
o k Subcartier Carrier
Uranus Neptune Uranus Neptune
1/4 0.033 0.11 0.94 3.0
? 1/3 0.030 0.10 . 0.86 2.8
1/4 0.042 0.14 1.2 39
) 1/3  0.038 0.13 1.1 3.6
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Fig. 5. Root loci of the third-order DPLL: (a) narrow bandwidth; (b) wide bandwidth,
underclamped; (c) wide bandwidth with region of real roots
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Appendix A

Derivation of N(z)

Figure A-1 is a block diagram of a DPLL with computation
delay g7, i.e., for the case when the NCO input is updated g7
seconds after the phase measurement is made, At the end of an
integration interval of T seconds, the phase detector renders
the difference of the average input phase and the average NCO
phase.

Denote by ¢, = nT the sampling time, and by y,, the output
of the NCO. We represent y, with a linear piecewise function
(see Fig. A-2) for g from O to 1,

yn—1+g+xn_1 '(t_tn—1+g) tn—1+g<t<tn+g
y(@) =
yn+g+xn-(t—tn+g) tn+g<t<tn+1+g
(A1)

the feedback function @nﬂ is the averaged phase output over
the interval from ¢, to £,,,,, i.e,,

94

t

~ ~ 1 n+l

0, = 0n+7f y(r) dr (A-2)
t
n

Performing the integration for intervals n and # + 1, we obtain

~

~ 1
8, =0, +5TI(1 -8l %, +(1+2-2")x,  +&°x, ]

(A-3)
Transforming to the z-domain, N(z) is
a 8@) _ TIQ -g)°2% + (1 + 22 -2 )z +£°]
Niz) & =< =
x(2) 222 (z - 1)
(A-4)
For the advanced receiver implementationg = 1,
Ne) = LD (A-5)
222 (z-1) ¢
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